City Crowd Logistics

Can commuters solve the Last-Mile Delivery Problem?

Motivation

- **Urbanization**: Growing population in cities, expected to reach 80% by 2100
- **E-commerce growth**: Mean annual growth of 10%, projections to increase up to 20% in 2018
- **Customers’ needs**: Customers are more demanding in terms of level of service and flexibility
 - Demand for speed (1-hour, 2-hour deliveries)
 - Delivery alternatives, like trunk deliveries, pickup points, etc
 - Customers have small willingness to pay

Concept:

- **Classic Internet**
- **Physical Internet (x)**
- **City Crowd Logistics Net**

Methodology

- **Strategic-Tactic Network Design**: 2-stage stochastic program for expected cost minimization
 - First stage decisions: physical locations for redistribution operations. Flow pre-allocation to the crowd
 - Recourse decisions: Flow allocation for professional courier services (backup process)
 - Stochastic capacity: Random time-dependent crowd flows

System Representation

- Operational Matching of Parcels & Commuters
 - Reduce number of routing options (rules, recommender, push-notification)
 - Match parcels to commuters by setting prices for each arc of each routing option (clock auction, surge price)

Impacts and Support Technology

- **Direct Impacts**:
 - Optimized network design
 - Online algorithms for resource allocation, routing and scheduling optimization
 - Reduction of last-mile delivery costs
 - Reduction of freight vehicle travels

- **Indirect Impacts**:
 - Reduction of emissions, congestion, and public space use

- **Support technology for Off-line pickups**:
 - Specialized parcel lockers (Boxes)

- **Mobile app for the Marketplace**:
 - Integrate shippers, carriers
 - Manage the crowd
 - Resource management
 - Decision support system
 - Tracking technology

- **Our Partners**:
 - 10 Parcels 12:00
 - 5 Parcels 12:20
 - 10 Parcels 12:30

Santiago Nieto-Isaza (TUM), Dr. Primin Fontain (TUM), Emanuel Herrmann (HNU)

Contact: Chair of Logistics and Supply Chain Management Prof. Dr. Oliver Kunze (HNU)
E-mail: santiago.nieto-isaza@tum.de

Prof. Dr. Stefan Minner (TUM)
Tel.: +49 89 289 28203

Clock auction price over time

- **Auctioning**:
 - Pricing mechanism for competitive price discovery and allocation of parcels to commuters

Space-Time Network	Time-dependent profile of arc (t, l)

Routing Options for a Parcel

- Source:
- Receiver
- Sender
- Min-Depot
- Reverse
- Mini-Depot / Pick-up
- Sort / Depot

Santiago Nieto-Isaza (TUM), Dr. Primin Fontain (TUM), Emanuel Herrmann (HNU)

Contact: Chair of Logistics and Supply Chain Management Prof. Dr. Oliver Kunze (HNU)
E-mail: santiago.nieto-isaza@tum.de

Prof. Dr. Stefan Minner (TUM)
Tel.: +49 89 289 28203

Clock auction price over time

- Latest delivery: 18h
- Earliest pickup: 0h
- Delivery time: 20 min
- Buffer: 10 min

- Case A: Price paid to sender
- Case B: Price paid to receiver
- Case C: No contact, order taken before

- Case D: Price paid to sender
- Case E: Price paid to receiver
- Case F: No contact, order taken before

- Case G: Price paid to sender
- Case H: Price paid to receiver
- Case I: No contact, order taken before

- Case J: Price paid to sender
- Case K: Price paid to receiver
- Case L: No contact, order taken before